DERERMINATION OF THE ABSOTITPF SETPTNG OF IHE AM 1 (M-209)* BY USING TWO MESSAGES WITE DIFFERENT INDICATORS

1. It is presupposed that the following technique is known: the determining of the absolute setting by moans of a decrypted message, whose relatlve setting has been fround.
2. For the second message a new apparatus of strips has to be made. The preparation of the strips (with the effective pin and alphabet soquences) is made analogously to the base of the first message--each set of strips being made independentiy of the other.
3. In determining the absolute setting by using one indicator group every possible setting of each rotor is tested against the assumed pin sequence until a setting free from contredictions on all rotors is found. This is also true in the case of using two indicator groups except that here the Letters of each two corresponding rotors are arranged--in respect to each other in each coupled setting of the apparatus-so that the same letter on each rotor is in the same position In the effeotive pin sequence. The arrengement of these letters on the rotors is shown in Table III.
4. The advantage of using two indicator Eroups lies in, the simultaneous use, from the beginning of the analysis, of both setp of strips, whereby, with respect to any one indicator group, a greater number of assumed settings can be recognized as impossible.

* DF-105

Fin ㅂ․․․

Peclassified by NSA 06-12-2014 pursuant TOEO 13526FOIA Case\# 77972
5. First, the initial rotor setting of the second message with respect to that of the first message must be sought-the position of which will be arbiterily noted as A A A A A (the relative effective alignment of message 1).
6. The first message (designated hereln by CAPITAL letters)* has, for example, the indicator group TNEGF CEBPL. The strips for each rotor may be seen in Table I.
7. The second message (designated herein by Iower case letters)* has, for example, the indicator group vinp dalctl. The straps for each roto may be seen in table II.
8. Now lay the strip for the 26 -rotor of the second massage healde the strip of the 26 -rotor of the first message so that the same portions of the effective pin sequences are in alignment. Then, boginning et the first of the strip of the 26 -rotor of the first message, count the interval of the alphabet sequence (in nomal order) of that rotor to the place Where the start for the 26 -rotor of the second message appears. In this example the letter "V" Will be found. (See Table II A).
9. The strips for all the other rotors are treated in the same manner, and the following letters are found:

$$
\begin{array}{lrrrrrr}
\text { rotor } & 26 & 25 & 23 & 21 & 19 & 17 \\
\text { letter } & V & L & V & L N & L & P
\end{array}
$$

[^0]10. These letters determine the rotor settings of the second message in respect to the rotor settings of the finst message. That $1 s, ~ " A$ " on rotor 26 of the first message comresponds to "V" on rotor 26 of the secord message. "A" on rotor 25 of the first message corresponds to "L"L on rotor 25 of the second mesarge, etc. The order of the other letters of the different rotors can be seen in Table III.
11. The determination of the absolute setting by means of both sets of strips is performed as follows: In the set of strips for the e1rst message the 26-rotor wlil be set to "ß" and in the strips for the second message the 26-rotor w111 be set to " z ". (See Table III). In each set of strips the sign arrangement of the pin sequence for the corresponing letters is taken from the appropriate "kick" table (See Table VI, VII), and ontered in the speces over " F " and " z " respectively. In Message I the 25-rotor strip sign is "plus"; in Message II it is İkewise "plus". Now in Message I the 25 -rotor-strip is entered at $" \mathbb{B}$ ". The corresponding letter on the 25 -rotor-strip of Message II should be "p" (See Table III). However, in Message II this setting is not possibie since a "minus" sign is alloted to the letter "p", while on account of the sign arrancement eatered over "z" oniy a "plus" sign is possible.
12. The next possible setting of the 25 -rotor-strip must be investigated. This setting is "D", "o". Since now in both sets of strips several impossibie "wis" are to be found (Table IV, V) the 23 -rotor strip is used in order to facilitate the
elimination of impossible letters. The finst possible setting of the 23-rotor-strips is "出", "c". Since, In the sec of strips of the Elrat message, the shgn arrongement of tho pin sequence "plus minus, plus"*, which appears in the second vertical colvin, is not to be found anong the 1mpossible "w" letters of the 25-rotor, only the letter "D" cen appear in this position. In the "kick" table (Table VI) this sign arrengoment of the pin sequence is found under the letter "D". Ifkewise in the strips of the second messege no "W" Ls possible and the sign order "minus, plus, plus", appesring in the second column, is to be found in Table VII at "co". Now, in both sets of strips, it must be tested whetiner or not the setting of " F ", " c " will be possible With impossible letters in the 23-rotor. Since in bath sets of strips it still seems possible for such letters to appear, the number of these possibilities may be narrowed by means of the strip for the 2l-potor.
13. On the 2λ-rotor strip " C " of the first message is set against "p" of the second message, whici produces a contreadiction in the strips of the second message. The next assumed setting for the 22 -rotor-strip is "O", " $\mathrm{f}^{\prime \prime}$, whereby in the strips of the second message a contradiction still appears, since in the strips of the second message the sign arrangement "plus, minus, plus", (in the thind colum) is out of the question

* The Germans listing of these rotors is always in a descending order. In the above example the rotors are the e3rd, 25th, and 26 th. This will be true throughout the transiation. The ASA usage is to list the 26 rotor first,

either \because or an impossible letter on the 23-rotor (Table V) or for "c" (Table VII).

14. The pext setting to be investigated on the 21-rotor $1 s$ "J", "b". Mhis, too, is impossible since in the strips of the first message by inspection of the third and fourth columns (see Iable IV, VI) this case can be excluded. Further possible settings of the 2l-rotor-strip of the first message are not valid. Therefore, the next possible "minus, plus" arrangement for the first message $1 . s$ set up on the 23-rotor-strips. This is "P" "n". Since there are, at first, four impossible patterns to be found in the strips of Message I, and 3^{*} impossible patterns in the strips of Message II, the 21-rotor-strip is used again. In the setting " 0 ", "g" of the 21-rotorostrip, the sign arpragement of "plus, plus, plus plus", appearing for Message II in the third colum, can be found neither for an impossible letter of the 23-rotor (Table V) nor under the letter " n " (Table VII). This setting is therefore impossible.
1.5. The next setting on the 21-rotor is "J": "b". Here, too, it develops in the strips for the second message, that the 23-rotor, as Well as for the 21 -rotor, no impossible letters appear, but in the third column "n" appears and in the fourth, column "b" appears. On the other hand, in the strips for the first message, in the third column an imposstble letter appears,

* The ortginal has "2" here (zwel verbotene Buchstaben) but this is an error because there are three. The text has therefore been corrected.
and in the fourth colima "p ll is possible. For the impossible Better in the third column there are two possibilities: "W \& $\mathrm{z}^{\prime \prime}$. Therefore one turns alreotly to the 19-rotor-strip.

16. By using both sets of strips there develops as the next possible setting on the $19-$ rotor "I", "d". In the strips for Message II one finds in the fifth column that "d" is determined by the sign arrangement "plus, plus, plus, plus, minus". Since, in the strips for Message I, in spite of the addition of the 19-rotor, several impossible letters still appear, the strip for the 17 -rotor is set up immediately, so that, by using both sets of strips, the setting "Q", "o" is obtained, whereby, now, all the rotors are determined without any question.
17. After that, one finds the indicator groups:

E	D	Z	P	J	\neq	L	Q
z	0	n	D	d	er	0	

18. The rest of the procedure, viz., assigning the correct Letter to each sign of the pin sequence, is the same as in the procedure for one indicator group.

Tables I

TABLE II

TABLE II A
26 rotor
Msg $1:$
abedefghijklanopqratuv
atat
Mgg 22

Msg 1 for all rotorg $26 \quad 25 \quad 2$ $23 \quad 21$ 19 17

a	v	1	v	n	1	p
b	w	m	π	0	m	q
c	x	n	a	P	n	a
d	y	0	b	q	0	b
-	2	p	c	r	P	c
P	a	q	d	${ }^{\text {B }}$	q	d
g	b	r	-	t	r	-
h	c	8	1	u	8	1
1	d	t	g	a	a	g
j	-	u	h	b	b	h
k	f	v	1	c	c	1
1	g	x	5	d	d	j
m	b	y	k	-	e	k
n	1	z	1	f	f	1
0	J	a	m	E	g	m
p	k	b	n	h	h	n
q	1.	c	0	1	1	-
r	min	d	p	J	1	
6	n	-	q	k	k	
t	\bigcirc	f	r	1		
u	p	g	8	m		
∇	q	h	t			
\%	r					
x	a	1	u			
y	t	1				
z	u					

TOP SEfR Seclurit informatlan

tt egf geb t工 4ag 1

17	W W ${ }^{\text {W }}$
19	
21	
23	－ 0
25	\cdots
26	－

TABLE IV
$+7^{25}$

$$
\begin{aligned}
& \text { प ZXVY而Z ต ZXXYV }
\end{aligned}
$$

17	6
19	6
21	$=-$
23	-6
25	6
26	-7

Y WZYY (Z

[^0]: * In the original the eirst message was designated by "BLJE" letters and the second message by "RED" letters.

